149. Mesomorphic Properties of Some 6-*n*-Alkyl-2-(4'-cyanophenyl)naphthalenes

Preliminary Communication

by Urs Lauk, Peter Skrabal and Heinrich Zollinger

Technisch-Chemisches Laboratorium, Eidgenössische Technische Hochschule, CH-8092 Zürich

(2.VI.83)

Summary

The synthesis of the title compounds 4 is described and their transition temperatures are compared with the nematic phases of the respective 6-*n*-alkoxynaphthalene derivatives.

In a recent communication we reported on 6-*n*-alkoxy- and 6-*n*-alkanoyloxy-2-(4'-cyanophenyl)naphthalenes as first representatives of a new class of nematic liquid crystals [1]. Here we describe the title compounds 4, the lower homologues of a third series in this class. They exhibit wide-range nematic phases with N-I transitions lower (28°(C₇) to 45°(C₃)) than the respective *n*-alkoxy analogues (C₂ to C₆; *Figure*). This is to be expected, since the anisotropic polarizibility is reduced by substitution of *n*-alkoxy terminal groups by *n*-alkyl groups [2].

Figure. Transition temperatures as function of number of atoms in the terminal group $(\bullet, \bigcirc: n$ -alkyl derivatives; $\bigstar, \triangle: n$ -alkoxy derivatives)

Compounds 4 were synthesized according to the Scheme. The 6-n-alkanoyl-2bromonaphthalenes 2 were obtained by Friedel-Crafts acylation [3] of 1 and then reduced to the respective alkylnaphthalenes 3 by triethylsilane in CF₃COOH [4]. The Grignard reagents of 3 [5] with $ZnCl_2 \cdot 2 Et_2O$ were converted to the naphthylzinc chlorides [6] which, in the presence of Pd (PPh₃)₄ [7] gave with 4-bromobenzonitrile the title compounds 4. All compounds were identified by the usual spectroscopic techniques and elemental analysis.

	R	Yield [%] ^a)	C-N [°]	N-I [°]
4a	n-C ₃ H ₇	5	106	140
4b	n-C4H9	17	74	125
4c	$n-C_5H_{11}$	1	85	128
4d	$n - C_6 H_{13}$	10	58	116
1e	$n - C_7 H_{15}$	10	57	120

Scheme

Table. Yields and Transition Temperatures of Compounds 4

REFERENCES

- [1] U. Lauk, P. Skrabal & H. Zollinger, Helv. Chim. Acta 64, 1847 (1981).
- [2] G. W. Gray, in 'Adv. Liq. Cryst.', Vol. II, 1976, p. 1.
- [3] R. B. Girdler, P. H. Gore & J.A. Hoskins, J. Chem. Soc. (C) 1966, 518.
- [4] Ch. T. West, St. J. Donnelly, D.A. Kooistra & M.P. Doyle, J. Org. Chem. 38, 2675 (1973).
- [5] R. L. Kidwell, M. Murphy & S. D. Darling, Org. Synth. 49, 90 (1969).
- [6] K. Nützel, in «Houben-Weyl, Methoden der organischen Chemie», Vol.XIII/2a, Georg-Thieme-Verlag, Stuttgart 1973, p. 651.
- [7] D.R. Coulson, Inorg. Synth. 13, 121 (1972); E. Negishi, A.O. King & N. Okukado, J. Org. Chem. 42, 1821 (1977).